Основы геометрии

Оглавление

Архитектура и геометрия

Геометрические принципы внедрены во все проекты архитектурных сооружений. Неоспорима решающая роль геометрии при строительстве любых зданий.

Строительное проектирование всегда производится с учетом пространственных форм, влияющих на зрительное восприятие и относящихся к важнейшим характеристикам любого здания.

Геометрический вид, являющийся важным свойством сооружения и определяемый трехмерными размерами (ширина, глубина, высота), зависим от их соотношения. При равных размерах – форма архитектурного сооружения выглядит объемной, при одном из размеров значительно меньшем, чем два остальных – сооружение выглядит плоским, а в случае, когда два размера намного менее одного, сооружение приобретает линейный вид.

Архитектурные свойства определяются протяженностью по трем координатным осям и характеризуются размерами по высоте, ширине и глубине относительно размеров человека или смежных строений.

Примечания и ссылки

Заметки

  1. Открытие таблички Плимптон 322 показывает, что теорема Пифагора, вероятно, была известна вавилонской цивилизации за 1000 лет до Пифагора.
  2. Эта формула апокрифическая: ἀγεωμέτρητος μηδεὶς εἰσίτω — ageômetrètos mèdeis eisitô .
  3. Две величины неизмеримы, если их соотношение не равно дроби. Также говорят, что это иррациональное число .
  4. Геометрия не единственная дисциплина , чтобы увидеть ее развитие взрывается XVII — го  века. Мы увидим , об этой статье Математика в Европе в XVII — м  веке .
  5. В том смысле, что нет причин приписывать неевклидовой геометрии онтологический статус, отличный от статуса евклидовой геометрии.

Рекомендации

  1. «  da ich das der Geschrei Böotier scheue  » письмо Гаусса к Бесселю от 27 июня 1829 г., цитируемое в (de) H. Reichardt , Gauß und die nicht der Anfänge-euklidischen Geometry , Springer-Verlag ,2013, 250  с. , стр.  40.

Первые следы геометрии

Мегалитный треугольник Валле-ди-Леванте в Фондачелли Фантина , Сицилия

Хотя можно считать основоположниками геометрии как науки и математической дисциплины, обширные знания в области геометрии, необходимые для топографии , архитектуры , астрономии и сельского хозяйства , возникли еще до греческой цивилизации. Первые признанные понятия геометрии относятся к 3000 году до нашей эры. Н.э. , со времен Древнего Египта , древней индуистской цивилизации, вавилонян и, возможно, (но гипотеза остается спорной) мегалитических народов Великобритании и Британии.

Египетская и вавилонская геометрии

Отрывок из папируса Ринда — около 1650 г. до н.э. Британская Колумбия — Британский музей

Египетские пирамиды и планы орошения свидетельствуют, по крайней мере, об эмпирическом знании плоских и твердых фигур. Немногочисленные оставшиеся документы ( папирус Москва , папирус Райнда , папирус Кахун ) показывают использование практических правил для решения конкретных вопросов, связанных с понятиями длины угла , площади и объема .

Похоже, что геометрия появилась у египтян в результате необходимости, с которой они сталкивались каждый год, исследовать земли, преобразованные в результате наводнений Нила. Затем он развивался для нужд архитектуры , сельского хозяйства и астрономии .

Предварительно вавилонская таблетки ЕКЗ 7289 начиная с -1700 ± 100 свидетельствует первые вопросы о расчете длины и дает хорошее приближение длины диагонали квадрата (квадратный корень из 2).

Среди результатов этих древних наук мы можем привести варианты теоремы Пифагора , разработанные египтянами и вавилонянами за 1500 лет до пифагорейцев, таблицу тригонометрии у вавилонян или точную формулу для объема усеченной квадратной пирамиды.

Индийская геометрия (3000-500 гг. До н.э. )

Цивилизации долины Инда использовали геометрические выводы, разработанные как их современники в Месопотамии и Египте.

Геометрия практикуется в Индии с тех пор, и индийский математик VII — го  века Брахмагупты , которому приписывают изобретение нуля , также автор теоремы, носящей его имя . Более того, вклад Индии в развитие тригонометрии также весьма значителен (см. История тригонометрических функций ).

Китайская геометрия

Девять глав математического искусства

Девять глав по математическому искусству , фундаментальный текст знаний о китайской цивилизации, предлагают вычисления площадей и объемов, а также формулировку теоремы Пифагора. Они были подготовлены к I — го или II — го  века  до нашей эры. AD .

Наглядное доказательство теоремы Пифагора

Аксиоматическая основа неевклидовой геометрии

Евклидова геометрия может быть описана аксиоматически несколькими способами. К сожалению, первоначальная система пяти постулатов (аксиом) Евклида не входит в их число, так как его доказательства опирались на несколько неустановленных предположений, которые также следовало принять в качестве аксиом. Система Гильберта, состоящая из 20 аксиом, наиболее точно следует подходу Евклида и обеспечивает обоснование всех доказательств Евклида. Другие системы, использующие разные наборы неопределенных терминов, получают ту же геометрию разными путями. Однако все подходы имеют аксиому, которая логически эквивалентна пятому постулату Евклида, постулату параллельности. Гильберт использует форму аксиомы Плейфэра, в то время как Биркгоф , например, использует аксиому, которая гласит: «Существует пара похожих, но не совпадающих треугольников». В любой из этих систем удаление одной аксиомы, эквивалентной постулату параллельности, в какой бы форме она ни принималась, и оставление всех остальных аксиом нетронутыми, дает абсолютную геометрию . Поскольку первые 28 утверждений Евклида (в «Элементах» ) не требуют использования постулата параллельности или чего-либо эквивалентного ему, все они являются истинными утверждениями в абсолютной геометрии.

Чтобы получить неевклидову геометрию, постулат параллельности (или его эквивалент) должен быть заменен его отрицанием . Отрицание формы аксиомы Playfair , поскольку это составное утверждение (… существует один и только один …), можно сделать двумя способами:

  • Либо будет существовать более одной прямой, проходящей через точку, параллельную данной прямой, либо не будет никаких прямых, проходящих через точку, параллельную данной прямой. В первом случае, заменяя постулат параллельности (или его эквивалент) утверждением «В плоскости, для данной точки P и прямой l, не проходящей через P, существуют две прямые, проходящие через P, которые не пересекаются с l » и сохраняя все остальные аксиомы дают гиперболическую геометрию .
  • Со вторым случаем справиться не так просто. Простая замена постулата параллельности утверждением: «В плоскости, если дана точка P и прямая l, не проходящая через P, все прямые, проходящие через P, пересекаются с l », не дает согласованного набора аксиом. Это следует из того, что параллельные прямые существуют в абсолютной геометрии, но это утверждение говорит об отсутствии параллельных прямых. Эта проблема была известна (в ином виде) Хайяму, Саккери и Ламберту и послужила основанием для их отказа от так называемого «случая тупого угла». Чтобы получить непротиворечивый набор аксиом, включающий эту аксиому об отсутствии параллельных прямых, необходимо изменить некоторые другие аксиомы. Эти корректировки зависят от используемой системы аксиом. Среди прочего, эти настройки имеют эффект модификации второго постулата Евклида от утверждения, что отрезки линии могут быть неограниченно продолжены, до утверждения, что линии не ограничены. Римана «с эллиптической геометрией возникает как наиболее естественной геометрии , удовлетворяющей эту аксиому.

Тексты и переводы

Старые русские переводы

  • Эвклидовы элементы из двенадцати нефтоновых книг выбранные и в осмь книг чрез профессора мафематики А. Фархварсона сокращённые. / Пер. с лат. И. Сатарова. СПб., 1739. 284 стр.
  • Елементы геометрии, то есть первые основания науки о измерении протяжении, состоящие из осьми Евклидовых книг. / Пер. с франц. Н. Курганова. СПб., 1769. 288 стр.
  • Евклидовых стихий осьмь книг, а именно: 1-я, 2-я, 3-я, 4-я, 5-я, 6-я, 11-я и 12-я. / Пер. с греч. СПб., 1784

    2-е изд. … к сим прилагаются книги 13-я и 14-я. 1789. 424 стр.

    . 370 стр.

  • Эвклидовых начал три книги, а именно: 7-я, 8-я и 9-я, содержащие общую теорию чисел древних геометров. / Пер. Ф. Петрушевского. СПб., 1835. 160 стр.
  • Восемь книг геометрии Эвклида. / Пер. с нем. воспитанниками реального училища… Кременчуг, 1877. 172 стр.
  • Начала Евклида. / С введ. и толкованиями М. Е. Ващенко-Захарченко. Киев, 1880. XVI, 749 стр.

Средневековые армянские переводы

В XI веке Григор Магистрос перевел с греческого на армянский «Начала» Евклида. Более обширный перевод Евклида сделан в позднем средневековье и приписывается автору XVII века Григору Кесараци.

Современные издания сочинений Евклида

Начала Евклида. Пер. и комм. Д. Д. Мордухай-Болтовского при ред. участии И. Н. Веселовского и М. Я. Выгодского. В 3 т. (Серия «Классики естествознания»). М.: ГТТИ, 1948-50. 6000 экз.

  • Евклидов корпус. Деление канона. Перевод А. Щетникова. ΣΧΟΛΗ, 6, 2012, c. 98-110.
  • Евклид. Оптика. Перевод А. Щетникова. ΣΧΟΛΗ, 13, 2019, c. 771—822.
  • Euclidus Opera Omnia. Ed. I. L. Heiberg & H. Menge. 9 vols. Leipzig: Teubner, 1883—1916.
  • Euclide. Les éléments. 4 vols. Trad. et comm. B. Vitrac; intr. M. Caveing. P.: Presses universitaires de France, 1990—2001.
  • Barbera A. The Euclidian Division of the Canon: Greek and Latin Sources // Greek and Latin Music Theory. Vol. 8. Lincoln: University of Nebraska Press, 1991.

Комбинации простейших объектов

Поговорим про комбинации простейших объектов. Например, две прямые, которые мы уже разглядели — либо пересекаются на плоскости, либо нет (тогда они параллельны).
 

Когда прямые пересекаются, можно ввести понятие отношения между двумя прямыми. Аналогично мы поступали с числами: ввели натуральные числа — количество предметов в множестве. А после этого изучали отношения между этими числами: дроби, возведение в степень.

Точно так же мы изучали множества, а после — отношения между множествами, функции.

Две прямые образуют углы. По сути, угол — это отношение между прямыми. Если один из них нулевой, то прямые параллельны. Если нет — прямые пересекаются.
 

Максимальный угол – это полный оборот, он составляет 360 градусов.

Угол — это часть плоскости, ограниченная двумя лучами, которые выходят из одной точки. Углы измеряются в градусах. Углов бесконечно много, так как от 0° до 360° угол может принимать бесконечное множество значений.

Есть разные виды углов, выделим самые часто встречающиеся:

  • Если градусная мера угла меньше 90° — угол острый.
  • Если градусная мера угла равна 90° — угол прямой.
  • Если градусная мера угла больше 90°, но меньше 180° — угол тупой.
  • Если градусная мера угла равна 180° — угол развернутый.

Точка называется вершиной угла, а лучи — сторонами угла.

Два угла называются вертикальными, если их стороны являются дополнительными лучами. Свойство вертикальных углов звучит так: вертикальные углы равны.

Два угла называются смежными, если одна сторона у них общая, а две другие являются дополнительными лучами. Свойство смежных углов: сумма смежных углов равна 180°.

Биссектриса угла — это луч с началом в вершине угла, который делит угол на две равные части.

А теперь посмотрим на взаимное расположение трех прямых.

Первый случай: все три прямые параллельны.

Второй случай: две прямые параллельны, а третья их пересекает.

Третий случай: если провести три прямые на плоскости случайным образом, велика вероятность образования треугольника. Поэтому этой фигуре мы уделяем так много времени в школе на уроках геометрии.

Взаимодействие объектов

Следующий уровень — это взаимодействие всех-всех объектов, о которых мы говорили раньше.

Например, окружность и прямая. Прямая может находиться где-то в стороне от окружности, может ее пересекать, а может касаться, то есть пересекать в одной точке.

Если прямая проходит через центр окружности, то она пересекает окружность в двух точках — концах диаметра, который лежит на на этой прямой.

На рисунке прямая a проходит через центр окружности (точку О) и пересекает ее в двух точках А и В, которые являются концами диаметра АВ данной окружности.

Если прямая a не проходит через центр О окружности радиуса r, то возможны три случая взаимного расположения прямой и окружности — в зависимости от соотношения между радиусом r этой окружности и расстоянием d от центра окружности до прямой a. Вот эти случаи:

  • Если расстояние от центра окружности до прямой меньше радиуса окружности (d < r), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
     
  • Если расстояние от центра окружности до прямой равно радиусу окружности (d = r), то прямая и окружность имеют только одну общую точку. В этом случае прямая называется касательной по отношению к окружности.
     
  • Если расстояние от центра окружности до прямой больше радиуса окружности (d > r), то прямая и окружность не имеют общих точек.

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность.

На рисунке четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

В любой треугольник можно вписать только одну окружность, и вокруг любого ее можно описать.

Все это верно только для треугольников. Не в любой четырехугольник можно вписать окружность, и не вокруг любого можно описать. Более подробно эту тему можно изучить на уроках математики: признаки, теоремы и правила. 

История возникновения геометрии

 
Геометрия с практической точки зрения — это потребность измерять формы. Считается, что геометрия впервые стала важной, когда Египетский фараон хотел обложить налогом фермеров, которые выращивали урожай вдоль реки Нил. Чтобы вычислить правильную сумму налога, люди фараона должны были измерить количество обрабатываемой земли.
 
Около \(2900\) лет до нашей эры была построена первая египетская пирамида

Знание геометрии было необходимо для построения пирамид, которые состояли из квадратного основания и треугольных граней. Самая ранняя запись формулы для вычисления площади треугольника датируется \(2000\) годом до нашей эры. Египтяне и вавилоняне разработали практическую геометрию для решения повседневных проблем, но нет никаких доказательств того, что они логически выводили геометрические факты из основных принципов.
 
Именно греки \(600\) – \(400\) лет до нашей эры разработали принципы современной геометрии. Фалес Милетский изучил подобные треугольники и написал доказательство того, что соответствующие стороны подобных треугольников пропорциональны.

Пифагор (\(569-475\) лет до н. э.)

 

Следующим считается Пифагор. Пифагор был первым математиком, логически выводящим геометрические факты из основных принципов. Пифагор основал братство под названием «пифагорейцы», которые преследовали знания в математике, науке и философии. Некоторые люди считают пифагорейскую школу местом рождения разума и логической мысли. Наиболее известным и полезным вкладом пифагорейцев была теорема Пифагора. Теория гласит, что сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы.

Евклид Александрийский (\(325-265\) лет до н. э.) 

 

Евклид Александрийский считается “отцом современной геометрии”. Евклид  ввел математическую строгость и аксиоматический метод, все еще используемый сегодня. Его книга “Начало”, написанная около 300 лет до нашей эры, считается самым влиятельным учебником всех времен и народов. Книга «Начало» была известна всем образованным людям на западе до середины 20-го века. Евклид изобрел \(23\) определения, \(5\) постулатов и \(5\) аксиом.
 

Аксиома — это утверждение, которое принимается без доказательств. Как только он доказал свое первое утверждение, на его основе он доказал второе, затем третье и т. д. Этот процесс известен как аксиоматический подход. Элементы Евклида составляют основу современной геометрии, которая преподается сегодня в школах, колледжах и университетах.

Рене Декарт (\(1596-1650\))

До появления Рене Декарта  в геометрии не было крупных изменений. Декарт объединил алгебру и геометрию для создания аналитической геометрии. Аналитическая геометрия, также известная как координатная геометрия, включает размещение геометрической фигуры в системе координат для иллюстрации доказательств и получения информации с использованием алгебраических уравнений.

Карл Фридрих Гаусс (\(1777-1855\))

Следующее большое развитие в геометрии пришло с развитием неевклидовой геометрии. Карл Фридрих Гаусс изобрел неевклидову геометрию, не основанную на постулатах Евклида. Параллельный постулат гласит, что через заданную точку  на прямой есть одна и только одна прямая, параллельная этой линии. Неевклидова геометрия задала математическую основу для теории относительности Эйнштейна.

Вымысел

Неевклидова геометрия часто появляется в произведениях научной фантастики и фэнтези .

  • В 1895 году Герберт Уэллс опубликовал рассказ «Замечательная история глаз Дэвидсона» . Чтобы оценить эту историю, нужно знать, как идентифицируются противоположные точки на сфере в модели эллиптической плоскости. По сюжету посреди грозы Сидни Дэвидсон видит «Волны и удивительно аккуратную шхуну», работая в электротехнической лаборатории в Техническом колледже Харлоу. В конце истории Дэвидсон оказывается свидетелем HMS Fulmar у острова Антиподы .
  • Неевклидова геометрия иногда связана с влиянием писателя ужасов ХХ века Л. П. Лавкрафта . В его работах многие неестественные вещи следуют своим собственным уникальным законам геометрии: в « Мифах о Ктулху» Лавкрафта затонувший город Р’льех характеризуется неевклидовой геометрией. В значительной степени подразумевается, что это достигается как побочный эффект несоблюдения естественных законов этой вселенной, а не просто использования альтернативной геометрической модели, поскольку ее явная врожденная неправильность, как говорят, способна свести с ума тех, кто смотрит на нее.
  • Главный герой романа Роберта Пирсига « Дзен и искусство ухода за мотоциклами» неоднократно упоминал риманову геометрию.
  • В «Братьях Карамазовых» Достоевский обсуждает неевклидову геометрию через своего персонажа Ивана.
  • Роман Кристофера Приста « Перевернутый мир» описывает борьбу жизни на планете с формой вращающейся псевдосферы .
  • Роберт Хайнлайн в своей книге « Число зверя» использует неевклидову геометрию для объяснения мгновенного переноса в пространстве и времени, а также между параллельными и вымышленными вселенными.
  • HyperRogue от Zeno Rogue — это игра в жанре roguelike, действие которой разворачивается на гиперболической плоскости , позволяя игроку испытать многие свойства этой геометрии. Многие механики, квесты и локации сильно зависят от особенностей гиперболической геометрии.
  • В Renegade Legion научной фантастики настройки для ФАЗА «s Wargame , ролевые игры-игры и вымысла, быстрее чем свет путешествия и связи возможно за счет использования Се Хо Polydimensional неевклидовой геометрии, опубликованной когда — то в середине 22 век.
  • В Флаттерленде» Яна Стюарта главный герой Виктория Лайн посещает самые разные неевклидовы миры.

«Начала»

Повторюсь эта книга уникальна. Более двух тысяч лет она была главным и практически единственным руководством по геометрии для учёных как западного, так и восточного мира. Ещё в конце XIX столетия во многих английских школах геометрию изучали по адаптированному изданию «Начал», и вряд ли можно найти более выразительное свидетельство популярности. В этом смысле конкурировать с «Началами» могут разве что Библия и Евангелие.

Но, в отличие от них, основа «Начал» строгая и жёсткая логика, точнее, Евклид всё время стремится к таковой. Можно полагать, что он был последователем Платона и Аристотеля. А Платон, как вы помните, требовал строго дедуктивного построения математики.

В фундаменте аксиомы, основные положения, принимаемые без доказательства, а далее всё должно быть строго логично выведено из аксиом. Этот идеал и пытается осуществить Евклид.

С современных позиций буквально вся его аксиоматика неудовлетворительна. Но это легко заявлять сейчас, после 25 веков исследований. А в своё время логика Евклида оставляла совершенно подавляющее впечатление. Во всяком случае, не следует забывать, что сама логическая схема её стала с тех пор канонической для построения любого раздела математики.

Попытки изложить геометрию на основе аксиоматического метода были и до Евклида. Но можно уверенно заключить, что работа Евклида была наиболее удачной. Свидетельство тому необычайная известность его книги уже в древнем мире, благодаря которой она и дошла до нас.

«Начала» блестяще написаны, в них чувствуется мастер своего дела, тонкий учёный и великолепный педагог. Поэтому поголовное поклонение математиков Евклиду и его «Началам» понятно и оправданно. Добавим ещё, что эта книга обратила в математическую веру несколько десятков молодых людей, ставших впоследствии крупнейшими математиками мира.

Влияние Евклида было поразительно во все века во всех краях света. Вот, например, в каких восхищённых тонах говорил о «Началах» один из виднейших математиков эпохи Возрождения Кардано: «Неоспоримая крепость их догматов и их совершенство настолько абсолютны, что по-видимому, только тот способен отличать в сложных вопросах геометрии истинное от ложного, кто усвоил Евклида».

А вот слова неизвестного английского геометра (это уже середина XIX века): «Никогда не было системы геометрии, которая в существенных чертах отличалась бы от плана Евклида; и до тех пор, пока я не увижу этого собственными глазами, я не поверю, что такая система может существовать».

Приведу одно яркое свидетельство влияния «Начал» буквально на все области мышления. Один из крупнейших в истории Западного мира философов, замечательный не только как философ, но и как человек Спиноза весь план своего основного сочинения «Этика» целиком заимствовал у Евклида.

И, наконец, для тех, кого не убеждает пример Спинозы, я приберёг Ньютона. Его основополагающий труд «Математические начала натуральной философии» копирует не только заглавие книги Евклида, но и её построение: великий Ньютон тоже выводит все свои результаты из набора аксиом!

Краткая биография

Биография Евклида до конца не изучена, к примеру, до сих пор неизвестен год рождения. Известно, что он появился на свет в небольшом районе Афин и был платоновским учеником.

Подъем его научной работы пришелся на правление Птолемея Первого. Некоторые сведения о его жизни можно проследить по арабским рукописям и архимедовым письмам к друзьям. Так, по ним можно определить, что Евклид был сыном греческого ученого и жил около Тира в Сирии.

С малых лет получал знания о мире от своего отца, он же привил сыну любовь к естественным наукам, а затем Евклид поступил в школу Платона, где и обучился математическим основам.

Повзрослев, его пригласили в храм Мусейон (по другим данным он был одним из его основателей), в котором собирались видные ученые с поэтами. Тут были классы для занятий. Также храм был заполнен садами с башнями астрономии, помещениями для одиноких размышлений и большой библиотекой.

В Мусейоне он смог открыть школу с лучшими математиками и монументальный труд в области математики, в котором заложил планиметрические основы со стереометрией, теорией чисел, законами алгебры, методами нахождения площадей с объемами и др.

Фрагмент папируса с текстом «Начал» Евклида

Монументальный труд — публикация «Начала». Это серия из 13 книг, представляющая собой обработанные публикации древнегреческих математиков с пятого по четвертый век до нашей эры.

Кроме «Начал», было создано еще одно сочинение — «Данные», в котором были опубликованы основы по геометрическому анализу. Кроме того, александрийский ученый создал учебник, с помощью которого в то время и сейчас изучают астрономию, перспективу, отражение в зеркале, музыкальные интервалы и решают тригонометрические задачи.

Все оставшиеся годы жизни посвятил изучению естественных наук и математических законов, отчего его называют отцом геометрии. О других аспектах его жизни неизвестно до сих пор. Умер в Александрии.

Это интересно: 231,ДУХОВНАЯ КУЛЬТУРА — разбираемся внимательно

Неевклидова геометрия

В геометрии Евклида имеется аксиома о параллельных, утверждающая: через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной. Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые. Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям геометрии приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову геометрию.
Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую геометрию, логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям.
Геометрия превратилась в разветвлённую и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т. д.) и фигуры в этих пространствах.

Начертательная геометрия

Инженерное образование в обязательном порядке предполагает изучение начертательной геометрии наряду с другими важными дисциплинами.

Для отображения геометрических характеристик зданий, машин, механизмов создаются чертежи их конструкций, определяющие особенности формы и размеров будущего изделия.

Начертательная геометрия представляет собой теоретическую базу, без использования которой невозможно создание специальной документации, называемой техническими чертежами. Чертежи являются необходимым средством для визуального отображения идеи создания той или иной технической продукции. На чертежах, в графической форме доступной для понимания, определены точные размеры и конструкция будущего продукта, представлены методы исполнения и возможность исследования изделия и его составных частей.

Для правильного выражения своих мыслей и идей с помощью эскизов и чертежей, необходимо тщательное изучение начертательной геометрии, включающей в себя геометрические законы построения изображений различных объектов с учетом многообразия их свойств и пространственного расположения относительно друг друга.

Начертательная геометрия, являющаяся графическим средством отображения информации, нашла широкое применение в жизни человечества.

Геометрическим формам присущи образность, символичность, компактность, доступность понимания. Простота и лаконичность графических изображений способствуют их повсеместному применению во всех областях созидательной деятельности человека.

Графика используется в качестве международного языка при общении народов различной культуры и национальных особенностей. Знание графического языка является преимущественным показателем при поиске работы, способствует совершенствованию образования и расширяет возможности воплощения идей человека в жизнь.

Евклид и античная философия[править | править код]

Йос ван Вассенхове (Юстус из Гента). Евклид, ок. . Урбино

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (т.наз. «математические» науки) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказаельства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должны где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

Вклад арабов и персов

Учитель Аристотеля.

Вклад арабской и персидской цивилизаций средневековья в развитие геометрии был весьма значительным.

В дополнение к переводу древних текстов, благодаря которому Европа вновь обретет знания о греческом наследии, арабские математики, соблюдающие прагматическую традицию, разработали тригонометрию. Введение тригонометрических функций приписывается Насир ад-Дину ат-Туси , персидскому математику из Хорасана.

Аль-Каши , другой персидский математик, обобщает теорему Пифагора (см. Теорему Аль-Каши ).

Демонстрация 5- й  аксиомы и задач дублирования куба на трисекцию углов и квадратуру круга увлечет персидских и арабских ученых так же, как и древних.

Это приведет к поиску формулировок, эквивалентных аксиоме Евклида ( Табит ибн Курра ), к получению превосходных приближений π (Аль Каши) или к разработке геометрических методов решения алгебраических уравнений и т. Д.

Модели неевклидовой геометрии

Сравнение эллиптической, евклидовой и гиперболической геометрий в двух измерениях


На сфере сумма углов треугольника не равна 180 °. Поверхность сферы не является евклидовым пространством, но локально законы евклидовой геометрии являются хорошими приближениями. В маленьком треугольнике на поверхности земли сумма углов очень близка к 180 °.

Двумерная евклидова геометрия моделируется нашим понятием «плоская плоскость ».

Эллиптическая геометрия

Простейшей моделью эллиптической геометрии является сфера, где линии представляют собой « большие круги » (например, экватор или меридианы на глобусе ), а точки, противоположные друг другу (называемые точками противоположностей ), идентифицируются (считаются одинаковыми). Это также одна из стандартных моделей реальной проективной плоскости . Разница в том, что в качестве модели эллиптической геометрии вводится метрика, позволяющая измерять длины и углы, а в качестве модели проективной плоскости такой метрики нет.

В эллиптической модели для любой данной прямой l и точки A , которая не находится на l , все прямые, проходящие через A, будут пересекать l .

Гиперболическая геометрия

Даже после работ Лобачевского, Гаусса и Бойяи оставался вопрос: «Существует ли такая модель для гиперболической геометрии ?». На модель гиперболической геометрии ответил Эудженио Бельтрами в 1868 году, который впервые показал, что поверхность, называемая псевдосферой, имеет соответствующую кривизну для моделирования части гиперболического пространства, а во второй статье того же года определил модель Клейна , которая моделирует целостность гиперболического пространства и использовал это, чтобы показать, что евклидова геометрия и гиперболическая геометрия были равносогласованными, так что гиперболическая геометрия была логически непротиворечивой тогда и только тогда, когда была евклидова геометрия. (Обратное утверждение следует из модели ориосферы евклидовой геометрии.)

В гиперболической модели внутри двумерной плоскости для любой данной прямой l и точки A , которая не находится на l , существует бесконечно много прямых, проходящих через A, которые не пересекаются с l .

В этих моделях концепции неевклидовой геометрии представлены евклидовыми объектами в евклидовой обстановке. Это приводит к искажению восприятия, при котором прямые линии неевклидовой геометрии представлены евклидовыми кривыми, которые визуально изгибаются. Этот «изгиб» не является свойством неевклидовых линий, а лишь искусственным способом их представления.

Трехмерная неевклидова геометрия

В трех измерениях есть восемь геометрических моделей. Как и в двумерном случае, существуют евклидова, эллиптическая и гиперболическая геометрии; смешанная геометрия, частично евклидова, частично гиперболическая или сферическая; витые варианты смешанной геометрии; и одна необычная геометрия, которая полностью анизотропна (т.е. каждое направление ведет себя по-разному).

Классификация треугольников по их сторонам

Для классификации треугольников можно использовать их типологию.

Один из распространенных типов — прямоугольный треугольник. Если один из углов прямой, то это накладывает определенные свойства на треугольник. Прямоугольный треугольник — это также половина прямоугольника.

Свойства прямоугольного треугольника

  1. Теорема Пифагора сумма длин квадратов катетов равна квадрату гипотенузы
  2. Свойство медианы: медиана, проведенная из вершины с прямым углом, равняется половине гипотенузы.

С прямоугольных треугольников начинается изучение тригонометрии. Можно измерять углы с помощью отношений, использовать понятия синуса, косинуса. Помним, что угол можно задать двумя числами, их отношением.

Если две стороны треугольника равны, то это равнобедренный треугольник — и тогда у него есть ось симметрии. Если нарисовать такой треугольник и сложить лист пополам, то две части треугольника совпадут. Эта особенность дает треугольнику определенные свойства.

Симметричный треугольник, у которого все углы и стороны равны — это равносторонний треугольник. У таких треугольников три оси симметрии. Это значит, что если мы повернем треугольник на 60 градусов, то получим точно такой же треугольник.

Такой треугольник задается одним параметром — длиной стороны. Она полностью определяет все другие значения и размеры в этом треугольнике.

От правильного треугольника может плавно перейти к правильным многоугольникам. У треугольника 3 угла, у четырехугольника — 4, а у пятиугольника — 5 углов. У многоугольника много углов